On the accuracy of van der Waals inclusive density-functional theory exchange-correlation functionals for ice at ambient and high pressures.
نویسندگان
چکیده
Density-functional theory (DFT) has been widely used to study water and ice for at least 20 years. However, the reliability of different DFT exchange-correlation (xc) functionals for water remains a matter of considerable debate. This is particularly true in light of the recent development of DFT based methods that account for van der Waals (vdW) dispersion forces. Here, we report a detailed study with several xc functionals (semi-local, hybrid, and vdW inclusive approaches) on ice Ih and six proton ordered phases of ice. Consistent with our previous study [B. Santra, J. Klimeš, D. Alfè, A. Tkatchenko, B. Slater, A. Michaelides, R. Car, and M. Scheffler, Phys. Rev. Lett. 107, 185701 (2011)] which showed that vdW forces become increasingly important at high pressures, we find here that all vdW inclusive methods considered improve the relative energies and transition pressures of the high-pressure ice phases compared to those obtained with semi-local or hybrid xc functionals. However, we also find that significant discrepancies between experiment and the vdW inclusive approaches remain in the cohesive properties of the various phases, causing certain phases to be absent from the phase diagram. Therefore, room for improvement in the description of water at ambient and high pressures remains and we suggest that because of the stern test the high pressure ice phases pose they should be used in future benchmark studies of simulation methods for water.
منابع مشابه
Hydrogen bonds and van der waals forces in ice at ambient and high pressures.
The first principles methods, density-functional theory and quantum Monte Carlo, have been used to examine the balance between van der Waals (vdW) forces and hydrogen bonding in ambient and high-pressure phases of ice. At higher pressure, the contribution to the lattice energy from vdW increases and that from hydrogen bonding decreases, leading vdW to have a substantial effect on the transition...
متن کاملVolumetric properties of high temperature, high pressure supercritical fluids from improved van der Waals equation of state
In the present work, a modified equation of state has been presented for the calculation of volumetric properties of supercritical fluids. The equation of state is van der Waals basis with temperature and density-dependent parameters. This equation of state has been applied for predicting the volumetric properties of fluids. The densities of fluids were calculated from the new equation of state...
متن کاملDensity, structure, and dynamics of water: the effect of van der Waals interactions.
It is known that ab initio molecular dynamics (AIMD) simulations of liquid water at ambient conditions, based on the generalized gradient approximation (GGA) to density functional theory (DFT), with commonly used functionals fail to produce structural and diffusive properties in reasonable agreement with experiment. This is true for canonical, constant temperature simulations where the density ...
متن کاملIce phases under ambient and high pressure: Insights from density functional theory
Water is common and plays a crucial role in biological, chemical, and physical processes, but its crystalline or ice state has a complicated structure. In this work, we study the lattice mismatch challenge for ice nucleation on silver iodide, the sublimation energy for different ice phases, and the structural phase-transition pressures of ice, with various density functionals. Our calculations ...
متن کاملThe random phase approximation applied to ice.
Standard density functionals without van der Waals interactions yield an unsatisfactory description of ice phases, specifically, high density phases occurring under pressure are too unstable compared to the common low density phase Ih observed at ambient conditions. Although the description is improved by using functionals that include van der Waals interactions, the errors in relative volumes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 139 15 شماره
صفحات -
تاریخ انتشار 2013